MADNESS: A Multiresolution, Adaptive Numerical Environment for Scientific Simulation

نویسندگان

  • Robert J. Harrison
  • Gregory Beylkin
  • Florian A. Bischoff
  • Justus A. Calvin
  • George I. Fann
  • Jacob Fosso-Tande
  • Diego Galindo
  • Jeff R. Hammond
  • Rebecca Hartman-Baker
  • Judith C. Hill
  • Jun Jia
  • Jakob S. Kottmann
  • M.-J. Yvonne Ou
  • Laura E. Ratcliff
  • Matthew G. Reuter
  • Adam C. Richie-Halford
  • Nichols A. Romero
  • Hideo Sekino
  • William A. Shelton
  • Bryan E. Sundahl
  • W. Scott Thornton
  • Edward F. Valeev
  • Álvaro Vázquez-Mayagoitia
  • Nicholas Vence
  • Yukina Yokoi
چکیده

MADNESS (multiresolution adaptive numerical environment for scientific simulation) is a high-level software environment for solving integral and differential equations in many dimensions that uses adaptive and fast harmonic analysis methods with guaranteed precision based on multiresolution analysis and separated representations. Underpinning the numerical capabilities is a powerful petascale parallel programming environment that aims to increase both programmer productivity and code scalability. This paper describes the features and capabilities of MADNESS and briefly discusses some current applications in chemistry and several areas of physics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Introducing the MADNESS numerical framework for petascale computing

We discuss how MADNESS (multiresolution adaptive numerical environment for scientific simulation) attempts to address issues of complexity, efficiency, and scalability with special emphasis on applications in chemistry and physics.

متن کامل

Multiple multiresolution representation of functions and calculus for fast computation

We describe the mathematical representations, data structure and the implementation of the numerical calculus of functions in the software environment multiresolution analysis environment for scientific simulations, MADNESS. In MADNESS, each smooth function is represented using an adaptive pseudo-spectral expansion using the multiwavelet basis to a arbitrary but finite precision. This is an ext...

متن کامل

Comparison of Adaptive Multiresolution and Adaptive Mesh Refinement Applied to Simulations of the Compressible Euler Equations

We present a detailed comparison between two adaptive numerical approaches to solve partial differential equations, adaptive multiresolution (MR) and adaptive mesh refinement (AMR). Both discretizations are based on finite volumes in space with second order shock-capturing and explicit time integration either with or without local time stepping. The two methods are benchmarked for the compressi...

متن کامل

Development of CFL-Free, Explicit Schemes for Multidimensional Advection-Reaction Equations

We combine an Eulerian–Lagrangian approach and multiresolution analysis to develop unconditionally stable, explicit, multilevel methods for multidimensional linear hyperbolic equations. The derived schemes generate accurate numerical solutions even if large time steps are used. Furthermore, these schemes have the capability of carrying out adaptive compression without introducing mass balance e...

متن کامل

Vlasov simulations on an adaptive phase-space grid

We introduce here a new method for the numerical resolution of the Vlasov equation on a phase space grid using an adaptive semi-Lagrangian method. The adaptivity is obtained through a multiresolution analysis which enables to keep or remove grid points from the simulation depending on the size of their associated coefficients in a multiresolution expansion. The adaptive algorithm consists in th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 38  شماره 

صفحات  -

تاریخ انتشار 2016